Thermal Management and Design of Heat Sinks Jewel Antony Cademix Magazine Jewel Antony Cademix Magazine

Thermal Management and Design of Heat Sinks

Estimated Reading Time: 6 minutes

Thermal Management and Design of Heat Sinks

By: Jewel Antony, Associate Researcher with Cademix & Mechanical Engineer

 

“Studies show that investments to spur renewable energy and boost energy efficiency generate far more jobs than oil and coal.”  ~ Jeff Goodell

Thermal Management and Design of Heat Sinks Jewel Antony Cademix Magazine Jewel Antony Cademix Magazine

Thermal Management is a multidisciplinary area related to energy efficiency and design optimization. To improve reliability and prevent premature failure, all electronic devices and circuits which generate excess heat, require thermal management. I a closed system, where there are no other energy interactions, the amount of heat output is equal to the power input. There are several cooling techniques including different heat sink styles, thermo-electric coolers, forced air systems and fans, heat pipes, and many other techniques. In cases of extreme low ambient temperatures, heating of the electronic components may be extremely necessary to maintain satisfactory operation. In this article we study a few aspects of thermal management and design of heat sinks.

heat Sink Mother board Thermal Management Article Cademix

View of a Computer Motherboard and the heat sink by Gigabyte.

Heat Sinks

Heat sinks (also commonly written heatsinks) are passive heat transmission and exchanger devices that transfers the heat generated by an electronic or mechanical system. They trasmit the extra heat to the surroundings medium, usually the ambient air or liquid coolant.  As a results, they dissipate away the heat from the system, and thus permitting temperature management of the device.

Heat sinks are important parts of electronic components to maintain them under the maximum allowed operational temperature and power. There are several methods to enhance the efficiency of heat sink, such as forced air cooling of heatsink Varieties of heatsink designs are proposed by specialized industries to cool different kinds of electronic components. However, in most cases we just need an appropriate heatsink to each specific case and particularly under transient heat generation that can be caused by many electronic or power electronic devices. The design optimization process usually includes a computer simulation based on Finite Element Analysis.

Computer Simulation of Heat sinks

A typical simulation of heat sinks includes an analysis focused on thermal performance of an industrial heat sink. The simulations are based on a single thermal analysis and finite element simulation. More accurate analysis are usually based on a transient analysis where the time dependency is included in the analysis. For many optimization problem though, it is enough to perform a steady state thermal analysis. 

In a finite element analysis, it is not required to include all the geometrical details of the surrounding, rather they will be includes in the analysis using their equivalent simplified geometries or rather the structural repetitions may be simplified as periodic boundary conditions in the simulation. Even the design may be simplified as a two dimensional model in certain analyses. It is however very important to consider the accurate material models of the major heat sink in the analysis. A detailed temperature dependent material properties may be required.

In the more sophisticated analysis, the researcher may even include the Computational Fluid Dynamics (CFD) simulations to determine the cooling performance of the actual heat sink under an active cooling like a air fan.

Computer CPU Fan Heatsink Cademix Thermal Management

The heat transfer from the heat sink occurs by three mechanisms. First convection of the surrounding air, second, conduction through the air, and third the radiation. All of these depend on the geometry, material selection and boundary conditions. Heat transfer by radiation is a function of both the heat sink temperature, and the ambient temperature.

In a normal finned design, both conduction and convection are important. However in n situations where convection is low, such as a flat heat sinks (non-finned panel with low airflow), then radiative cooling can be the important factor as well. In any case, an important design factor is the surface properties. Black painted matte surfaces radiate with much higher efficiently than bare metals.

 

Heat Sink heat transfer Conduction and convection

Heat Sink Simulation

The simulation of a heat sink starts with the analysis of the design and model simplification. It’s very important to know that the very small geometrical features does not play a significant role in the thermal analysis and the corresponding thermal management. The design process starts with the 2D sketching of the model and continues with the 3D design of the simplified model. The definitions of the proper material properties are the next step.

Heat Sink 2D Design
Heat Sink simulation design Side View
Heat Sink simulation design

Meshing of the model is the next step. Afterwards, we come to the definition of the boundary conditions and load. and finally we can see the analysis of the results.

Heat Sink, Thermal Management Finite Element Simulation
Heat sink meshing

The final step is the analysis of the results. Here we mainly interested in the thermal distribution, which is the results of an steady state thermal analysis.

Heat Sink thermal simualtion finite element results with mesh visible
Thermal simulation Finite Element analysis of heat sink

Sometimes the customers are interested in specific kind of images, for brochures, which include all of these images blended in a single image. This kind of illustrations are usually required for marketing purpose and presentation.

Finite Element Blended Image results of thermal analysis Marketing image

References

Thermal management and design optimization of heatsink for cooling performance improvement during transient heat generation,by A.m. Rhmani et. al. Energy Procedia 61 ( 2014 ) 1665 – 1668

 

https://en.wikipedia.org/wiki/Heat_sink

 

Related Topics

People also visited:

Why "CV Template PDF" Isn't What You Need: The Right Way to Create an Editable CV
Navigating the Evolving Job Market in Central Europe: Insights on Domesticity, Regulation, and High-...
Application History: A Career Acceleration Toolkit
Comparison Of The European Fertilizer Consumption With The Middle East
Intralogistics Solutions and Automation
3D-Planning Software, From Traditional to Modern Architecture
Academic Struggles with Social Media Impact: An Organizational Psychology Perspective
Career Development Options
AI-Assisted SEO: Leveraging Artificial Intelligence for Optimal Search Engine Performance
Technology-Driven Career Acceleration: Why AI is Not Enough
Self-Care Tips for Professionals: Maintaining Eye Health with Regular Eye Check Ups
5 simple social Hacks for better likability
Comprehensive Guide to CV Format Word: How to Choose and Customize for Job Applications
Innovating for a Sustainable, Eco-Friendly Design Revolution
New Pioneer in 5G and IoT: European Tourism Industry
Optometrist Germany: Opportunities, Education, and Professional Pathways
Cheapest Eye Exam Near Me: Understanding the Sociological and Psychological Impacts
Navigating the Optometrist Career: A Pathway to Vision Health and Professional Fulfillment
Post-COVID Tourism in the Age of AI
Pre Reg Optometrist Jobs: A Comprehensive Guide for Aspiring Optometrists
International Applicants in Europe: Psychological Barriers and Adaptation Strategies
How to change jobs during a pandemic
Crawl Space or Underground Air Duct ?
How Public Perceives Multidisciplinary Experts: Insights from Psychology and the Halo Effect
Estimated Reading Time: 6 minutes

Thermal Management and Design of Heat Sinks

By: Jewel Antony, Associate Researcher with Cademix & Mechanical Engineer

 

“Studies show that investments to spur renewable energy and boost energy efficiency generate far more jobs than oil and coal.”  ~ Jeff Goodell

Thermal Management and Design of Heat Sinks Jewel Antony Cademix Magazine Jewel Antony Cademix Magazine

Thermal Management is a multidisciplinary area related to energy efficiency and design optimization. To improve reliability and prevent premature failure, all electronic devices and circuits which generate excess heat, require thermal management. I a closed system, where there are no other energy interactions, the amount of heat output is equal to the power input. There are several cooling techniques including different heat sink styles, thermo-electric coolers, forced air systems and fans, heat pipes, and many other techniques. In cases of extreme low ambient temperatures, heating of the electronic components may be extremely necessary to maintain satisfactory operation. In this article we study a few aspects of thermal management and design of heat sinks.

heat Sink Mother board Thermal Management Article Cademix

View of a Computer Motherboard and the heat sink by Gigabyte.

Heat Sinks

Heat sinks (also commonly written heatsinks) are passive heat transmission and exchanger devices that transfers the heat generated by an electronic or mechanical system. They trasmit the extra heat to the surroundings medium, usually the ambient air or liquid coolant.  As a results, they dissipate away the heat from the system, and thus permitting temperature management of the device.

Heat sinks are important parts of electronic components to maintain them under the maximum allowed operational temperature and power. There are several methods to enhance the efficiency of heat sink, such as forced air cooling of heatsink Varieties of heatsink designs are proposed by specialized industries to cool different kinds of electronic components. However, in most cases we just need an appropriate heatsink to each specific case and particularly under transient heat generation that can be caused by many electronic or power electronic devices. The design optimization process usually includes a computer simulation based on Finite Element Analysis.

Computer Simulation of Heat sinks

A typical simulation of heat sinks includes an analysis focused on thermal performance of an industrial heat sink. The simulations are based on a single thermal analysis and finite element simulation. More accurate analysis are usually based on a transient analysis where the time dependency is included in the analysis. For many optimization problem though, it is enough to perform a steady state thermal analysis. 

In a finite element analysis, it is not required to include all the geometrical details of the surrounding, rather they will be includes in the analysis using their equivalent simplified geometries or rather the structural repetitions may be simplified as periodic boundary conditions in the simulation. Even the design may be simplified as a two dimensional model in certain analyses. It is however very important to consider the accurate material models of the major heat sink in the analysis. A detailed temperature dependent material properties may be required.

In the more sophisticated analysis, the researcher may even include the Computational Fluid Dynamics (CFD) simulations to determine the cooling performance of the actual heat sink under an active cooling like a air fan.

Computer CPU Fan Heatsink Cademix Thermal Management

The heat transfer from the heat sink occurs by three mechanisms. First convection of the surrounding air, second, conduction through the air, and third the radiation. All of these depend on the geometry, material selection and boundary conditions. Heat transfer by radiation is a function of both the heat sink temperature, and the ambient temperature.

In a normal finned design, both conduction and convection are important. However in n situations where convection is low, such as a flat heat sinks (non-finned panel with low airflow), then radiative cooling can be the important factor as well. In any case, an important design factor is the surface properties. Black painted matte surfaces radiate with much higher efficiently than bare metals.

 

Heat Sink heat transfer Conduction and convection

Heat Sink Simulation

The simulation of a heat sink starts with the analysis of the design and model simplification. It’s very important to know that the very small geometrical features does not play a significant role in the thermal analysis and the corresponding thermal management. The design process starts with the 2D sketching of the model and continues with the 3D design of the simplified model. The definitions of the proper material properties are the next step.

Heat Sink 2D Design
Heat Sink simulation design Side View
Heat Sink simulation design

Meshing of the model is the next step. Afterwards, we come to the definition of the boundary conditions and load. and finally we can see the analysis of the results.

Heat Sink, Thermal Management Finite Element Simulation
Heat sink meshing

The final step is the analysis of the results. Here we mainly interested in the thermal distribution, which is the results of an steady state thermal analysis.

Heat Sink thermal simualtion finite element results with mesh visible
Thermal simulation Finite Element analysis of heat sink

Sometimes the customers are interested in specific kind of images, for brochures, which include all of these images blended in a single image. This kind of illustrations are usually required for marketing purpose and presentation.

Finite Element Blended Image results of thermal analysis Marketing image

References

Thermal management and design optimization of heatsink for cooling performance improvement during transient heat generation,by A.m. Rhmani et. al. Energy Procedia 61 ( 2014 ) 1665 – 1668

 

https://en.wikipedia.org/wiki/Heat_sink

 

Related Topics

People also visited:

Rethinking Doctoral Training: Gaps and Challenges in Achieving Long-Term Career Sustainability
Difficulties of Voluntarily Rescuing Stray Dogs in Iran
Chatgpt: Revolutionizing Conversational AI and Beyond
AI-Assisted SEO: Leveraging Artificial Intelligence for Optimal Search Engine Performance
Mastering Event Management: Key Skills Every Planner Should Have
Investing in Agriculture: Exploring the FarmTogether Platform
Case Studies Innovative Projects Made Possible with TinkerCAD and FreeCAD
Agility Within a Non-Agile Environment
Innovative Approaches to Enhancing Team Collaboration in Virtual Workspaces
CooperVision Biofinity: A Comprehensive Guide to Premium Contact Lenses
FMEA Insights in Manufacturing Industry
SEO-Herausforderungen und -Strategien für mehrsprachige Websites
SEO Challenges and Strategies for Multilingual Websites
The Comprehensive Guide to Finding the Best Eye Doctor
Acoustic Thermoplastic Polymer Analysis
Biofinity Toric: A Comprehensive Guide to Comfort and Clear Vision for Astigmatism
The Strategic Role of BIM and LEED Certifications in the European Construction Market
Navigating Digital Age Customer Expectations and Response Times
Roles of ISFJ and Defenders during Corona Pandemic
Why Europe is very attractive destination for highly skilled workers and international tech graduate...
Comprehensive Guide to ATS-Friendly CV Templates: How to Create, Customize, and Use ATS-Compatible C...
European Language Proficiency Tests: CEF vs. IELTS and TOEFL
Inclusive Workforce Strategies: Barriers to Preparing Graduates for Diverse and Aging Workforces
Electrical Design Tools: EPLAN, AutoCAD Electrical and the Alternates

Comments are closed.