3D printer heads have the function to bring up the temperature of the material to the melting point. At the same time, it keep the filament in the solid-state, that is below the glass transition temperature, as long as possible before getting into the melting pool [3]. The length of the printing head can be sectioned by three zones. First zone is where the material is solid (below Tg). Second zone is where the material is soft (between Tg and Tm). Finally, the third zone is where the material is molten (above Tm). The optimum 3D printing head has a minor size of zone 2 and 3. The main issue for clogging in the 3D printers head is due to the size of the zone 2 [4].
In this paper, we present an analysis to find the effect of heat sink geometry on the size of zone 2. We use finite element analysis, to systematically change the fin size, and to study the temperature distribution to determine the size of the zones. The results of this study present guides for designing the optimum heat sink, fin size that offers the minimum length of zone 2 at the same time keeping the heat sink as small as possible.
Standard CAD procedures used to create the simplified model of the 3D printing extruder, compatible with our finite element software, ANSYS workbench. The design was a simple extruder concentrically embedded in a cylindrically symmetric heat sink. The assembly is composed of five parts, corresponding to the different materials, described in Figure 1. It shows the geometry of the extruder under study. The simplified model has superior materials which are essential for thermal analysis. The annotations in Figure 1(Middle) include the following materials and parts. 1. Aluminium, heat sink part, 2. Stainless steel, the screw is connecting the hot end to the heat sink, 3. Brass, hot-end 4. Aluminium, the housing for heater and thermistor, 5. Teflon tube, used for controlling the temperature and enhancing the Zone 2.